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LETTER TO EDITOR 

Lattice decorations and pseudo-continuum percolation 

G Ord and S G Whittington 
Department of Chemistry, University of Toronto, Toronto, Ontario M55 1A1, Canada 

Received 27 June 1980 

Abstract. Several families of two-dimensional lattices are discussed for which the critical 
percolation density ( p , )  can be calculated exactly. The lattices are obtained by decorating 
lattices for which the value of the critical density for bond percolation is already known. It is 
shown that finite decorations of this type do not change the value of a critical exponent. By a 
sequence of decorations and lattice transformations we obtain a set of lattices of increasing 
coordination number 4, and calculate the limit 4pc for 4 + for this family. The value of this 
limit is close to the numerical estimate of the corresponding critical density for continuum 
percolation. 

For any lattice L we consider a decorated lattice LD obtained from L in the following 
way. The bond set of L is replaced by a set of identical two-rooted graphs (with a finite 
number of vertices) where the roots replace the two vertices incident on the original 
bond in L, and each pair of two-rooted graphs has no vertices in common, except 
possibly their roots. For instance, if L is the square lattice and the decoration is the 
two-rooted graph in figure l (a) ,  LD is the lattice in figure l (6) .  

(01 ( b )  

Figure 1. Decorating the square lattice with the two-rooted graph ( a )  leads to the lattice (6) .  

If we consider the bond percolation problem on this pair of lattices we can map any 
configuration on LD onto a corresponding (unique) configuration on L by occupying a 
bond A-B in L if and only if the roots in the corresponding decoration on LD are 
connected. This surjection of configurations in LD onto configurations in L clearly 
preserves percolation in that if a configuration C percolates on LD then its image under 
this surjection percolates on L. 

If the bond density on LD isp then the probability that the roots in the decoration are 
connected,f(p), will be a non-decreasing function of p .  For instance, for the example in 
figure 1 
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If the critical bond density on L is pc(L) and the corresponding critical density on LD is 
p,(LD), we have 

Pc(L) =f(pc(LD)). (2) 

To relate the exponents on the two lattices it is convenient to write the bond density 
and critical bond density on LD as p and p , ,  and the corresponding quantities on L as f 
andf,. The percolation probability on L is F ( f )  which we assume to have the power law 
behaviour 

F(f) -A(f-fcIP, f +fc+. (3) 

For any percolating configuration on LD the root points have identical connectivity to 
their images in L, so that their percolation probability is preserved. The percolation 
probability for non-root points in LD is just the probability of being connected to at least 
one root times the root percolation probability. Since the probability of being connec- 
ted to at least one root times the root percolation probability of being connected to at 
least one root is a finite polynomial and hence analytic, the percolation probability on 
LD is then of the form 

provided that f ’ ( p , )  # 0. That is, with this condition the critical exponent is unchanged 
by the decoration. To show that f ’ ( p , ) # O  we argue as follows: If the roots on a 
two-rooted graph are connected then there exists at least one self-avoiding walk joining 
the roots A and B. Consider any bond j on such a walk and write 

where Pr{ABIj} and Pr{ABIT} are the conditional probabilities that A and B are 
connected given that bond j is or is not present, respectively, and pi is the probability 
that bond j is present. Since Pr{ABIj} and Pr{ABIy} are not explicit functions of pi, 

af(p)/apj =Pr{ABlj}-Pr{ABIr}. ( 6 )  

This quantity is non-negative since adding a bond cannot decrease a percolation 
probability. If 8f(p)/api = 0 then Pr{AB} is independent of bond j and this can only 
occur if either 

(i) there is at least one self-avoiding walk connecting the roots which has all bonds 
present with probability one, or 

(ii) every self-avoiding walk containing j and connecting the roots has at least one 
bond absent with probability one. 

Neither of these is possible provided that we restrict our attention to bond 
probabilities in the open interval. Since df/dp may therefore be expanded as a sum of 
non-negative terms, and at least one such term is positive, df/dp>O for O < p <  1. 
Hence these finite decorations do not alter the exponent p. Unfortunately, we have 
been unable to extend these arguments to infinite decorations. 

Considering pseudo-continuum percolation, Domb (1972) discussed a family of 
lattice models in which the range of percolation extends to first, second, third, etc 
neighbours, so that the coordination number (g) in the site percolation process can in 



Letter to the Editor L309 

principle be increased indefinitely. The corresponding critical site densities ( p , )  were 
estimated by series analysis and an estimate was made of 

L = lim qpc 
4-m 

in order to make contact with continuum percolation (Gilbert 1961). In the same spirit 
we use bond decorations to construct a family of lattices, LD, with decreasing average 
coordination numbers, construct the corresponding covering lattices, Lc, (to convert to 
site percolation) and then find the corresponding matching lattices, L". If the critical 
density is known for the bond problem on the original lattice, the critical site density ( p , )  
can be calculated on L" and the value of limq+m qpc where q is the coordination number 
of the matching lattice, can be calculated exactly. 

For example, for the bond problem on the square lattice (L)pc = $ (Sykes and Essam 
1964). To construct LD we replace each bond on L by n bonds in series (figure 2(a ) )  and 
then carry out a bond-site transformation to obtain L' (figure 2(b)) .  LD has the 
connectivity function 

f(p) = P" (7) 

so that the critical density for bond percolation on LD (and site percolation on L') is 
(t)"". We now construct the matching lattice of Lc (figure 2(c)) which has critical 
density for site percolation ( p c )  given by 

p ,  1 - (;)1'n (8) 

9 = 7 n  - 1. (9) 

and coordination number 

Letting n += 03 we have 

L = lim qpc = 7 In 2 = 4.852 . . . (10) 
n-m 

( c l  

Figure 2. ( a )  A square lattice in which each bond is replaced by n bonds in series. ( b )  The 
covering lattice of (a ) .  (c) The matching lattice of ( b )  in which K4" is the complete graph on 
4n vertices. 
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Similar calculations for the hexagonal and triangular lattices give L = 4,692 . . . and 
5.287.  . . respectively. 

These values of L clearly depend on the parent lattice but are all reasonably close to 
Domb’s estimate for the continuum of 4.0 to 4.5 (Domb 1972). The limiting lattices 
differ from the continuum in a number of important ways. Clearly the lattice points are 
countable but, more importantly, they are not dense in the plane. In spite of this, they 
represent examples of lattices with infinite coordination number, for which L can be 
calculated exactly and which give values of L close to that of the continuum. 

In order to understand why the calculated values are higher than the continuum 
value consider an arbitrary point on the lattice shown in figure 2(c). Construct the 
smallest disc centred at this point which just contains all the 7 n  - 1 ‘neighbours’ of the 
initial point, In general the disc will contain other lattice points to which the initial point 
is not connected so that in this sense the lattice has lower connectivity than the 
corresponding continuum problem and would be expected to percolate at higher 
density. In addition the lattice points are distributed along a set of lines (rather than 
Poisson distributed in the plane) so that discs centred at these lattice points will ‘cover’ 
the plane less efficiently. 

The authors would like to thank D S Gaunt, C Domb, and M F Sykes for helpful 
discussions. This research was financially supported by the NSERC of Canada. 
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